
ICML 2025 Spotlight | 新理论框架解锁流匹配模型的引导生成
ICML 2025 Spotlight | 新理论框架解锁流匹配模型的引导生成在解决离线强化学习、图片逆问题等任务中,对生成模型的能量引导(energy guidance)是一种可控的生成方法,它构造灵活,适用于各种任务,且允许无额外训练条件生成模型。同时流匹配(flow matching)框架作为一种生成模型,近期在分子生成、图片生成等领域中已经展现出巨大潜力。
在解决离线强化学习、图片逆问题等任务中,对生成模型的能量引导(energy guidance)是一种可控的生成方法,它构造灵活,适用于各种任务,且允许无额外训练条件生成模型。同时流匹配(flow matching)框架作为一种生成模型,近期在分子生成、图片生成等领域中已经展现出巨大潜力。
前段时间,沉寂了很久的Flux官方团队Black Forest Labs发布了新模型:FLUX.1 Kontext,这是一套支持生成与编辑图像的流匹配(flow matching)模型。FLUX.1 Kontext不仅支持文生图,还实现了上下文图像生成功能,可以同时使用文本和图像作为提示词,并能无缝提取修改视觉元素,生成全新且协调一致的画面。
王劲,香港大学计算机系二年级博士生,导师为罗平老师。研究兴趣包括多模态大模型训练与评测、伪造检测等,有多项工作发表于 ICML、CVPR、ICCV、ECCV 等国际学术会议。
在人工智能领域,跨模态生成(如文本到图像、图像到文本)一直是技术发展的前沿方向。现有方法如扩散模型(Diffusion Models)和流匹配(Flow Matching)虽取得了显著进展,但仍面临依赖噪声分布、复杂条件机制等挑战。
本篇论文是由南洋理工大学 S-Lab 与普渡大学提出的无分类引导新范式,支持所有 Flow Matching 的生成模型。目前已被集成至 Diffusers 与 ComfyUI。
在 ICLR 2025 中,来自南洋理工大学 S-Lab、上海 AI Lab、北京大学以及香港大学的研究者提出的基于 Flow Matching 技术的全新 3D 生成框架 GaussianAnything,针对现有问题引入了一种交互式的点云结构化潜空间,实现了可扩展的、高质量的 3D 生成,并支持几何-纹理解耦生成与可控编辑能力。